Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1344095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469330

RESUMO

Homogentisate Phytyltransferase (HPT) catalyzes condensation of homogentisate (HGA) and phytyl diphosphate (PDP) to produce tocopherols, but can also synthesize tocotrienols using geranylgeranyl diphosphate (GGDP) in plants engineered for deregulated HGA synthesis. In contrast to prior tocotrienol biofortification efforts, engineering enhanced tocopherol concentrations in green oilseeds has proven more challenging due to the integral role of chlorophyll metabolism in supplying the PDP substrate. This study show that RNAi suppression of CHLSYN coupled with HPT overexpression increases tocopherol concentrations by >two-fold in Arabidopsis seeds. We obtained additional increases in seed tocopherol concentrations by engineering increased HGA production via overexpression of bacterial TyrA that encodes chorismate mutase/prephenate dehydrogenase activities. In overexpression lines, seed tocopherol concentrations increased nearly three-fold, and resulted in modest tocotrienol accumulation. We further increased total tocochromanol concentrations by enhancing production of HGA and GGDP by overexpression of the gene for hydroxyphenylpyruvate dioxygenase (HPPD). This shifted metabolism towards increased amounts of tocotrienols relative to tocopherols, which was reflected in corresponding increases in ratios of GGDP/PDP in these seeds. Overall, our results provide a theoretical basis for genetic improvement of total tocopherol concentrations in green oilseeds (e.g., rapeseed, soybean) through strategies that include seed-suppression of CHLSYN coupled with increased HGA production.

2.
Plant Cell ; 36(4): 1140-1158, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38124486

RESUMO

Chlorophyll degradation causes the release of phytol, which is converted into phytyl diphosphate (phytyl-PP) by phytol kinase (VITAMIN E PATHWAY GENE5 [VTE5]) and phytyl phosphate (phytyl-P) kinase (VTE6). The kinase pathway is important for tocopherol synthesis, as the Arabidopsis (Arabidopsis thaliana) vte5 mutant contains reduced levels of tocopherol. Arabidopsis harbors one paralog of VTE5, farnesol kinase (FOLK) involved in farnesol phosphorylation. Here, we demonstrate that VTE5 and FOLK harbor kinase activities for phytol, geranylgeraniol, and farnesol with different specificities. While the tocopherol content of the folk mutant is unchanged, vte5-2 folk plants completely lack tocopherol. Tocopherol deficiency in vte5-2 plants can be complemented by overexpression of FOLK, indicating that FOLK is an authentic gene of tocopherol synthesis. The vte5-2 folk plants contain only ∼40% of wild-type amounts of phylloquinone, demonstrating that VTE5 and FOLK both contribute in part to phylloquinone synthesis. Tocotrienol and menaquinone-4 were produced in vte5-2 folk plants after supplementation with homogentisate or 1,4-dihydroxy-2-naphthoic acid, respectively, indicating that their synthesis is independent of the VTE5/FOLK pathway. These results show that phytyl moieties for tocopherol synthesis are completely but, for phylloquinone production, only partially derived from geranylgeranyl-chlorophyll and phytol phosphorylation by VTE5 and FOLK.


Assuntos
Arabidopsis , Fosfotransferases (Aceptor do Grupo Álcool) , Tocoferóis , Tocoferóis/metabolismo , Vitamina E/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Vitamina K 1/metabolismo , Fitol/metabolismo , Farneseno Álcool/metabolismo , Plantas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Clorofila/metabolismo
3.
Methods Enzymol ; 683: 171-190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37087186

RESUMO

Isoprenoids in plants are synthesized following the plastidial methylerythritol-4-phosphate (MEP) pathway or the mevalonate pathway localized to the cytosol and peroxisomes. Isoprenyl-diphosphates (isoprenyl-PP) are important intermediates for the synthesis of chlorophyll, carotenoids, sterols, and other isoprenoids in plants. The quantification of isoprenyl-PP is challenging due to the amphipathic structure, the low abundance, and the susceptibility to hydrolysis during extraction and storage. Different methods for the measurement of isoprenyl-phosphates have been developed. Isoprenyl-phosphates can be measured after radioactive labeling or after derivatization. Liquid chromatography-mass spectrometry (LC-MS) methods provide enhanced sensitivity, but still require the extraction from large amounts of sample material. In the protocol presented here, the monophosphates and diphosphates of farnesol, geranylgeraniol and phytol are isolated from plant material with an isopropanol-containing buffer and quantified by LC-MS using citronellyl-P and citronellyl-PP as internal standards. With a low limit of detection for phytyl-P, geranylgeranyl-P, phytyl-PP, and geranylgeranyl-PP, isoprenyl-phosphates can be accurately measured in Arabidopsis leaves or seeds starting with only 20mg of fresh weight.


Assuntos
Arabidopsis , Difosfatos , Difosfatos/metabolismo , Espectrometria de Massas/métodos , Terpenos/química , Cromatografia Líquida , Plantas/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo
4.
Plant J ; 103(3): 1140-1154, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32365245

RESUMO

Thiol-based redox-regulation is vital for coordinating chloroplast functions depending on illumination and has been throroughly investigated for thioredoxin-dependent processes. In parallel, glutathione reductase (GR) maintains a highly reduced glutathione pool, enabling glutathione-mediated redox buffering. Yet, how the redox cascades of the thioredoxin and glutathione redox machineries integrate metabolic regulation and detoxification of reactive oxygen species remains largely unresolved because null mutants of plastid/mitochondrial GR are embryo-lethal in Arabidopsis thaliana. To investigate whether maintaining a highly reducing stromal glutathione redox potential (EGSH ) via GR is necessary for functional photosynthesis and plant growth, we created knockout lines of the homologous enzyme in the model moss Physcomitrella patens. In these viable mutant lines, we found decreasing photosynthetic performance and plant growth with increasing light intensities, whereas ascorbate and zeaxanthin/antheraxanthin levels were elevated. By in vivo monitoring stromal EGSH dynamics, we show that stromal EGSH is highly reducing in wild-type and clearly responsive to light, whereas an absence of GR leads to a partial glutathione oxidation, which is not rescued by light. By metabolic labelling, we reveal changing protein abundances in the GR knockout plants, pinpointing the adjustment of chloroplast proteostasis and the induction of plastid protein repair and degradation machineries. Our results indicate that the plastid thioredoxin system is not a functional backup for the plastid glutathione redox systems, whereas GR plays a critical role in maintaining efficient photosynthesis.


Assuntos
Cloroplastos/metabolismo , Glutationa Redutase/metabolismo , Fotossíntese , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Bryopsida/enzimologia , Bryopsida/metabolismo , Bryopsida/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Cloroplastos/enzimologia , Cloroplastos/fisiologia , Técnicas de Inativação de Genes , Glutationa/metabolismo , Glutationa Redutase/fisiologia , Oxirredução
5.
Prog Lipid Res ; 74: 1-17, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30629961

RESUMO

Phytol, the prenyl side chain of chlorophyll, is derived from geranylgeraniol by reduction of three double bonds. Recent results demonstrated that the conversion of geranylgeraniol to phytol is linked to chlorophyll synthesis, which is catalyzed by protein complexes associated with the thylakoid membranes. One of these complexes contains light harvesting chlorophyll binding like proteins (LIL3), enzymes of chlorophyll synthesis (protoporphyrinogen oxidoreductase, POR; chlorophyll synthase, CHLG) and geranylgeranyl reductase (GGR). Phytol is not only employed for the synthesis of chlorophyll, but also for tocopherol (vitamin E), phylloquinol (vitamin K) and fatty acid phytyl ester production. Previously, it was believed that phytol is derived from reduction of geranylgeranyl-diphosphate originating from the 4-methylerythritol-5-phosphate (MEP) pathway. The identification and characterization of two kinases, VTE5 and VTE6, involved in phytol and phytyl-phosphate phosphorylation, respectively, indicated that most phytol employed for tocopherol synthesis is derived from reduction of geranylgeranylated chlorophyll to (phytol-) chlorophyll. After hydrolysis from chlorophyll, free phytol is phosphorylated by the two kinases, and phytyl-diphosphate employed for the synthesis of tocopherol and phylloquinol. The reason why some chloroplast lipids, i.e. chlorophyll, tocopherol and phylloquinol, are derived from phytol, while others, i.e. carotenoids and tocotrienols (in some plant species) are synthesized from geranylgeraniol, remains unclear.


Assuntos
Fitol/metabolismo , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...